organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,4-Dibenzyl-1,4-diazoniabicyclo[2.2.2]octane bis(trifluoromethanesulfonate)

Chungang Chen,^a Yan Zhang^{b*} and Korbanjhon Brad^c

^aSchool of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, People's Republic of China, ^bCollege of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China, and ^cSchool of Chemistry and Biological Science, Yili Normal University, Yining 835000, People's Republic of China

Correspondence e-mail: cpzyyan@hotmail.com

Received 16 October 2007; accepted 20 October 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.009 Å; disorder in solvent or counterion; R factor = 0.059; wR factor = 0.173; data-toparameter ratio = 11.4

In the title compound, C₂₀H₂₆N₂²⁺·2CF₃SO₃⁻, the dihedral angle between the phenyl rings of the dication is 9.4 $(3)^{\circ}$. The -CF₃ groups of both anions are disordered over two sets of positions of in ratios 0.920 (10):0.080 (10) and 0.76 (3):0.24 (3). In the crystal structure, $C-H \cdots O$ interactions link the molecules into columns.

Related literature

For ammonium cations containing a 1,4-diazabicyclo[2.2.2]octane core, see: Chantrapromma et al. (2002); Mansikkamäki et al. (2005).

Experimental

Crystal data

$C_{-1}H_{-1}N_{-}^{2+}.2CE_{-}O_{-}S^{-}$	$V = 5166 (2) Å^3$
$M_{\rm r} = 592.57$	Z = 8
Orthorhombic, <i>Pbca</i>	Mo $K\alpha$ radiation
a = 13.759 (3) Å	$\mu = 0.29 \text{ mm}^{-1}$
b = 14.334 (3) Å	T = 294 (2) K
c = 26.195 (6) Å	$0.18 \times 0.16 \times 0.10~\mathrm{mm}$

Data collection

Bruker SMART 1K CCD 24969 measured reflections diffractometer 4560 independent reflections Absorption correction: multi-scan 1952 reflections with $I > 2\sigma(I)$ (SADABS; Sheldrick, 1996) $R_{\rm int}=0.149$ $T_{\min} = 0.950, T_{\max} = 0.972$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.059$	144 restraints
$wR(F^2) = 0.173$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$
4560 reflections	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$
399 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C7-H7A\cdots O6^{i}$	0.97	2.54	3.380 (6)	145
C9−H9A···O1 ⁱⁱ	0.97	2.56	3.416 (6)	148
$C9 - H9B \cdots O2^{iii}$	0.97	2.38	3.227 (6)	146
$C10-H10B\cdots O1^{iii}$	0.97	2.43	3.347 (6)	156
$C11 - H11A \cdots O4^{iii}$	0.97	2.38	3.255 (6)	150
C11−H11B···O6	0.97	2.37	3.191 (5)	142
$C12 - H12B \cdots O5$	0.97	2.38	3.287 (6)	155
$C14-H14A\cdots O1^{ii}$	0.97	2.50	3.357 (7)	148
$C14-H14B\cdots O4^{iii}$	0.97	2.54	3.394 (7)	147

Symmetry codes: (i) $x + \frac{1}{2}$, $y, -z + \frac{1}{2}$; (ii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, z.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2583).

References

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Chantrapromma, S., Usman, A., Fun, H.-K., Poh, B.-L. & Karalai, C. (2002). Acta Crvst. E58, 0102-0104.

Mansikkamäki, H., Schalley, C. A., Nissinen, M. & Rissanen, K. (2005). New J. Chem. 29, 116-127.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o4464 [doi:10.1107/81600536807052063]

1,4-Dibenzyl-1,4-diazoniabicyclo[2.2.2]octane bis(trifluoromethanesulfonate)

C. Chen, Y. Zhang and K. Brad

Comment

In the dication of the title compound, (I), (Fig. 1), the dihedral angle between the terminal phenyl rings is $9.4 (3)^{\circ}$, indicating a *trans* conformation.

A network of C—H…O interactions (Table 1) between cation and anions link the molecules into columns. The adjacent columns are stabilized by weak aromatic interactions.

For related structures, see: Chantrapromma et al. (2002); Mansikkamäki et al. (2005).

Experimental

The title compound was obtained, in a 75% yield, from counterion exchange of 1,4-dibenzyl-1,4-diazoniabicyclo[2.2.2]octane dibromide (4.52 mg, 10 mmol) with silver trifluoromethanesulfonate (2.83 mg, 11 mmol) in methanol/acetonitrile (10 ml, v/v 1:4). Colourless blocks of (I) were grown by natural evaporation of a CH₃CN/CH₂Cl₂ (v/v 1:1) solution.

Refinement

All H atoms were positioned geometrically (C—H = 0.93 and 0.97 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$. The –CF₃ groups of the two trifluoromethanesulfonate anions were found to be disordered. The site occupancies of one trilate ion was refined to 0.920 (10):0.080 (10) and that of the other to 0.76 (3):0.24 (3).

Figures

Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level (arbitrary spheres for the H atoms). Only one orientation of each trifluoromethanesulfonate ion is shown.

1,4-Dibenzyl-1,4-diazoniabicyclo[2.2.2]octane bis(trifluoromethanesulfonate)

Crystal	data
---------	------

${\rm C_{20}H_{26}N_2}^{2+} \cdot 2 {\rm CF_3O_3S^-}$	
$M_r = 592.57$	
Orthorhombic, Pbca	

 $F_{000} = 2448$ $D_x = 1.524 \text{ Mg m}^{-3}$ Mo Ka radiation Hall symbol: -P 2ac 2ab a = 13.759 (3) Å b = 14.334 (3) Å c = 26.195 (6) Å V = 5166 (2) Å³ Z = 8

Data collection

Bruker SMART 1K CCD diffractometer	4560 independent reflections
Radiation source: fine-focus sealed tube	1952 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.149$
T = 294(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -16 \rightarrow 16$
$T_{\min} = 0.950, \ T_{\max} = 0.972$	$k = -12 \rightarrow 17$
24969 measured reflections	$l = -31 \rightarrow 23$

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.6 - 19.6^{\circ}$

 $\mu = 0.29 \text{ mm}^{-1}$

T = 294 (2) K

Block, colourless

 $0.18 \times 0.16 \times 0.10 \text{ mm}$

Cell parameters from 1753 reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.059$	H-atom parameters constrained
$wR(F^2) = 0.173$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.07P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\text{max}} = 0.002$
4560 reflections	$\Delta \rho_{max} = 0.29 \text{ e} \text{ Å}^{-3}$
399 parameters	$\Delta \rho_{min} = -0.27 \text{ e } \text{\AA}^{-3}$
144 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
N1	0.5039 (3)	0.1698 (2)	0.28420 (15)	0.0310 (10)	
N2	0.5071 (3)	0.0692 (2)	0.20271 (15)	0.0305 (10)	
C1	0.3890 (4)	0.1821 (3)	0.3991 (2)	0.0489 (15)	
H1	0.3366	0.2006	0.3790	0.059*	
C2	0.3725 (5)	0.1458 (4)	0.4476 (3)	0.0670 (19)	
H2	0.3094	0.1403	0.4599	0.080*	
C3	0.4484 (6)	0.1187 (4)	0.4768 (2)	0.070 (2)	
Н3	0.4370	0.0941	0.5091	0.084*	
C4	0.5424 (6)	0.1269 (4)	0.4593 (3)	0.070 (2)	
H4	0.5941	0.1082	0.4797	0.084*	
C5	0.5592 (4)	0.1626 (4)	0.4119 (2)	0.0530 (16)	
Н5	0.6229	0.1682	0.4003	0.064*	
C6	0.4831 (4)	0.1908 (3)	0.3804 (2)	0.0359 (13)	
C7	0.5038 (4)	0.2349 (3)	0.33045 (19)	0.0399 (14)	
H7A	0.5668	0.2650	0.3325	0.048*	
H7B	0.4558	0.2834	0.3247	0.048*	
C8	0.5599 (4)	0.0811 (3)	0.29332 (19)	0.0405 (14)	
H8A	0.5336	0.0489	0.3228	0.049*	
H8B	0.6274	0.0958	0.3003	0.049*	
C9	0.5532 (4)	0.0187 (3)	0.24675 (19)	0.0410 (14)	
H9A	0.6178	-0.0018	0.2371	0.049*	
H9B	0.5150	-0.0362	0.2550	0.049*	
C10	0.4022 (3)	0.1436 (3)	0.2681 (2)	0.0383 (14)	
H10A	0.3628	0.1995	0.2650	0.046*	
H10B	0.3730	0.1040	0.2939	0.046*	
C11	0.4043 (3)	0.0927 (3)	0.2176 (2)	0.0425 (14)	
H11A	0.3665	0.0357	0.2202	0.051*	
H11B	0.3751	0.1315	0.1914	0.051*	
C12	0.5512 (3)	0.2205 (3)	0.24066 (18)	0.0385 (14)	
H12A	0.6148	0.2425	0.2512	0.046*	
H12B	0.5123	0.2745	0.2316	0.046*	
C13	0.5621 (4)	0.1581 (3)	0.1945 (2)	0.0455 (15)	
H13A	0.5374	0.1897	0.1644	0.055*	
H13B	0.6303	0.1443	0.1889	0.055*	
C14	0.5103 (4)	0.0051 (3)	0.15592 (19)	0.0394 (14)	
H14A	0.5752	-0.0209	0.1532	0.047*	
H14B	0.4658	-0.0464	0.1616	0.047*	
C15	0.4850 (4)	0.0501 (3)	0.1062 (2)	0.0407 (14)	
C16	0.5581 (4)	0.0838 (4)	0.0752 (2)	0.0556 (16)	
H16	0.6223	0.0811	0.0862	0.067*	
C17	0.5370 (6)	0.1213 (4)	0.0284 (3)	0.076 (2)	
H17	0.5870	0.1441	0.0080	0.091*	
C18	0.4437 (7)	0.1253 (4)	0.0115 (3)	0.081 (2)	
H18	0.4297	0.1507	-0.0203	0.097*	
C19	0.3693 (6)	0.0912 (5)	0.0421 (3)	0.080 (2)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H19	0.3053	0.0940	0.0308	0.096*	
C20	0.3901 (5)	0.0532 (4)	0.0893 (2)	0.0575 (17)	
H20	0.3403	0.0298	0.1095	0.069*	
S 1	0.20596 (10)	0.40619 (9)	0.33002 (5)	0.0408 (4)	
F1	0.1019 (5)	0.4374 (3)	0.4105 (2)	0.107 (2)	0.920 (10)
F2	0.2488 (4)	0.3995 (5)	0.42608 (18)	0.130 (3)	0.920 (10)
F3	0.1492 (5)	0.2968 (3)	0.4033 (2)	0.0942 (19)	0.920 (10)
F1'	0.101 (3)	0.323 (3)	0.397 (3)	0.078 (19)	0.080 (10)
F2'	0.170 (4)	0.4667 (15)	0.4217 (13)	0.040 (13)	0.080 (10)
F3'	0.256 (2)	0.339 (3)	0.4140 (7)	0.17 (2)	0.080 (10)
01	0.2473 (3)	0.4983 (2)	0.33005 (16)	0.0668 (12)	
O2	0.1144 (3)	0.4028 (3)	0.30509 (16)	0.0753 (13)	
03	0.2700 (4)	0.3325 (3)	0.31787 (18)	0.1060 (18)	
C21	0.1763 (4)	0.3850 (4)	0.3955 (3)	0.0635 (19)	
S2	0.28188 (10)	0.33629 (9)	0.17470 (5)	0.0390 (4)	
F4	0.3532 (11)	0.4358 (5)	0.1020 (4)	0.085 (3)	0.76 (3)
F5	0.2433 (8)	0.3406 (12)	0.0780 (3)	0.100 (3)	0.76 (3)
F6	0.3860 (9)	0.2898 (7)	0.0955 (5)	0.104 (4)	0.76 (3)
F4'	0.4084 (12)	0.3128 (19)	0.1073 (7)	0.064 (8)	0.24 (3)
F5'	0.322 (2)	0.4388 (9)	0.0912 (14)	0.076 (10)	0.24 (3)
F6'	0.268 (2)	0.299 (2)	0.0755 (8)	0.071 (8)	0.24 (3)
O4	0.2075 (3)	0.4040 (3)	0.18113 (17)	0.0884 (16)	
O5	0.3699 (3)	0.3521 (3)	0.20207 (16)	0.0749 (13)	
O6	0.2488 (2)	0.2410 (2)	0.17770 (15)	0.0563 (11)	
C22	0.3177 (4)	0.3502 (4)	0.1094 (2)	0.0621 (18)	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.029 (2)	0.023 (2)	0.041 (3)	-0.0019 (18)	-0.004 (2)	0.007 (2)
N2	0.032 (3)	0.024 (2)	0.036 (3)	-0.0010 (18)	0.002 (2)	0.0068 (19)
C1	0.051 (4)	0.043 (3)	0.053 (4)	0.005 (3)	0.000 (3)	-0.008 (3)
C2	0.084 (5)	0.058 (4)	0.059 (5)	-0.003 (4)	0.030 (4)	-0.002 (4)
C3	0.126 (7)	0.056 (4)	0.028 (4)	0.012 (4)	0.014 (5)	0.000 (3)
C4	0.093 (6)	0.075 (5)	0.042 (5)	0.015 (4)	-0.010 (4)	0.007 (3)
C5	0.049 (4)	0.068 (4)	0.042 (4)	0.005 (3)	-0.007 (3)	0.000 (3)
C6	0.043 (4)	0.027 (3)	0.038 (3)	0.000 (2)	0.003 (3)	0.005 (2)
C7	0.043 (3)	0.030 (3)	0.047 (4)	-0.006 (2)	-0.007 (3)	-0.006(3)
C8	0.041 (3)	0.035 (3)	0.045 (4)	0.007 (3)	-0.003 (3)	0.016 (3)
C9	0.045 (4)	0.037 (3)	0.042 (3)	0.014 (2)	-0.001 (3)	0.010 (3)
C10	0.024 (3)	0.037 (3)	0.054 (4)	-0.002 (2)	0.003 (3)	0.000 (3)
C11	0.025 (3)	0.042 (3)	0.061 (4)	0.007 (2)	-0.004 (3)	-0.007 (3)
C12	0.043 (3)	0.028 (3)	0.044 (4)	-0.014 (2)	-0.001 (3)	0.007 (3)
C13	0.055 (4)	0.040 (3)	0.041 (4)	-0.020 (3)	0.001 (3)	0.013 (3)
C14	0.045 (4)	0.031 (3)	0.042 (4)	0.004 (2)	-0.002 (3)	-0.005 (3)
C15	0.050 (4)	0.037 (3)	0.035 (3)	-0.004 (3)	-0.003 (3)	-0.005 (3)
C16	0.058 (4)	0.064 (4)	0.045 (4)	-0.008 (3)	0.003 (3)	-0.003 (3)
C17	0.118 (7)	0.062 (5)	0.047 (5)	-0.021 (4)	0.013 (5)	0.003 (4)

C18	0.150 (8)	0.051 (4)	0.040 (5)	0.014 (5)	-0.021 (5)	-0.001 (3)
C19	0.099 (6)	0.080 (5)	0.060 (5)	0.018 (5)	-0.034 (5)	-0.003 (4)
C20	0.057 (5)	0.059 (4)	0.057 (4)	-0.002 (3)	-0.014 (4)	-0.008 (3)
S1	0.0411 (9)	0.0445 (9)	0.0369 (9)	0.0073 (7)	-0.0002 (7)	0.0014 (7)
F1	0.139 (5)	0.086 (3)	0.097 (4)	0.002 (3)	0.069 (4)	-0.015 (3)
F2	0.181 (5)	0.146 (5)	0.064 (3)	-0.049 (4)	-0.062 (3)	0.012 (3)
F3	0.132 (5)	0.060 (3)	0.090 (4)	-0.013 (3)	0.032 (3)	0.023 (3)
F1'	0.08 (2)	0.07 (2)	0.08 (2)	-0.004 (10)	0.007 (10)	0.005 (10)
F2'	0.045 (16)	0.041 (15)	0.035 (15)	0.002 (10)	-0.003 (10)	-0.005 (9)
F3'	0.17 (2)	0.17 (2)	0.17 (2)	0.0001 (11)	-0.0001 (11)	0.0000 (11)
01	0.054 (3)	0.063 (3)	0.084 (3)	-0.021 (2)	-0.002 (2)	0.014 (2)
O2	0.070 (3)	0.074 (3)	0.081 (3)	-0.010 (2)	-0.043 (3)	-0.001 (2)
O3	0.138 (4)	0.103 (3)	0.078 (3)	0.087 (3)	0.044 (3)	0.023 (3)
C21	0.070 (5)	0.047 (4)	0.073 (5)	-0.004 (3)	0.014 (4)	-0.011 (4)
S2	0.0394 (9)	0.0416 (8)	0.0360 (8)	0.0076 (7)	0.0030 (7)	-0.0011 (7)
F4	0.110 (6)	0.062 (4)	0.083 (5)	-0.016 (3)	0.032 (5)	0.021 (3)
F5	0.149 (6)	0.096 (7)	0.056 (4)	-0.002 (5)	-0.032 (4)	0.001 (4)
F6	0.134 (6)	0.081 (5)	0.099 (5)	0.005 (5)	0.066 (5)	-0.033 (4)
F4'	0.043 (10)	0.074 (12)	0.074 (11)	-0.001 (7)	0.012 (7)	-0.018 (8)
F5'	0.073 (12)	0.072 (12)	0.082 (12)	0.006 (7)	0.009 (8)	0.029 (8)
F6'	0.091 (12)	0.074 (11)	0.047 (9)	-0.004 (8)	-0.002 (7)	-0.010 (8)
O4	0.101 (4)	0.083 (3)	0.081 (3)	0.061 (3)	0.042 (3)	0.023 (3)
O5	0.065 (3)	0.081 (3)	0.079 (3)	-0.019 (2)	-0.038 (3)	-0.003 (2)
O6	0.051 (2)	0.045 (2)	0.073 (3)	-0.0096 (18)	-0.002 (2)	0.012 (2)
C22	0.069 (5)	0.052 (5)	0.065 (5)	-0.002 (4)	0.017 (4)	-0.007 (4)

Geometric parameters (Å, °)

N1	1.501 (6)	С13—Н13В	0.9700
N1—C8	1.506 (6)	C14—C15	1.494 (7)
N1—C10	1.509 (5)	C14—H14A	0.9700
N1—C7	1.529 (6)	C14—H14B	0.9700
N2—C13	1.497 (5)	C15—C16	1.380 (7)
N2—C9	1.503 (6)	C15—C20	1.380 (7)
N2—C11	1.506 (5)	C16—C17	1.371 (8)
N2	1.533 (6)	С16—Н16	0.9300
C1—C6	1.389 (7)	C17—C18	1.360 (9)
C1—C2	1.391 (8)	С17—Н17	0.9300
C1—H1	0.9300	C18—C19	1.389 (9)
C2—C3	1.352 (8)	C18—H18	0.9300
С2—Н2	0.9300	C19—C20	1.379 (8)
C3—C4	1.377 (9)	С19—Н19	0.9300
С3—Н3	0.9300	С20—Н20	0.9300
C4—C5	1.363 (8)	S1—O3	1.411 (4)
C4—H4	0.9300	S1—O2	1.420 (4)
C5—C6	1.393 (7)	S1—O1	1.438 (4)
С5—Н5	0.9300	S1—C21	1.788 (7)
C6—C7	1.482 (7)	F1—C21	1.330 (6)
С7—Н7А	0.9700	F2—C21	1.296 (6)

С7—Н7В	0.9700	F3—C21	1.334 (6)
C8—C9	1.516 (7)	F1'—C21	1.367 (11)
С8—Н8А	0.9700	F2'—C21	1.359 (10)
C8—H8B	0.9700	F3'—C21	1.370 (10)
С9—Н9А	0.9700	S2—O4	1.421 (4)
С9—Н9В	0.9700	S2—O5	1.425 (4)
C10-C11	1.513 (7)	S2—O6	1.442 (3)
C10—H10A	0.9700	S2—C22	1.791 (6)
C10—H10B	0.9700	F4—C22	1.334 (7)
C11—H11A	0.9700	F5—C22	1.321 (7)
C11—H11B	0.9700	F6—C22	1.329 (7)
C12—C13	1.512 (6)	F4'—C22	1.359 (9)
C12—H12A	0.9700	F5'—C22	1.358 (10)
C12—H12B	0.9700	F6'—C22	1.347 (10)
C13—H13A	0.9700		
C12—N1—C8	107.9 (4)	C15—C14—H14B	108.4
C12—N1—C10	108.1 (4)	N2—C14—H14B	108.4
C8—N1—C10	108.0 (4)	H14A—C14—H14B	107.5
C12—N1—C7	107.9 (3)	C16—C15—C20	119.3 (5)
C8—N1—C7	112.9 (4)	C16—C15—C14	119.6 (5)
C10—N1—C7	111.9 (3)	C20—C15—C14	121.0 (5)
C13—N2—C9	107.9 (4)	C17—C16—C15	120.7 (6)
C13—N2—C11	108.8 (4)	C17—C16—H16	119.7
C9 - N2 - C11	107 8 (4)	C15-C16-H16	119.7
$C_{13} - N_{2} - C_{14}$	112 4 (4)	C18 - C17 - C16	120 5 (7)
C9 = N2 = C14	108.2(3)	C18 - C17 - H17	119.8
$C_{11} = N_{2} = C_{14}$	1115(4)	C16-C17-H17	119.8
C_{6}	120.4 (6)	C17 - C18 - C19	119.6 (7)
C6-C1-H1	119.8	C_{17} C_{18} H_{18}	120.2
C_{2} C_{1} H_{1}	119.8	C19 - C18 - H18	120.2
$C_2 = C_1 = 111$	120.0 (6)	$C_{10} - C_{10} - C_{18}$	120.2 120.2(7)
C_{3} C_{2} H_{2}	120.0 (0)	$C_{20} - C_{19} - H_{19}$	120.2 (7)
$C_{1} = C_{2} = H_{2}$	120.0	$C_{20} = C_{19} = H_{19}$	119.9
$C_1 = C_2 = C_1$	120.0	C10_C19_H19	119.9
$C_2 = C_3 = C_4$	120.7 (6)	C19 - C20 - C13	119.8 (0)
$C_2 = C_3 = H_3$	119.0	C19 - C20 - H20	120.1
C4—C3—H3	119.6	C15-C20-H20	120.1
$C_{5} = C_{4} = C_{3}$	119.7 (6)	03 = S1 = 02	115.1 (3)
C5—C4—H4	120.1	03-51-01	116.1 (3)
C3—C4—H4	120.1	02-\$1-01	112.5 (2)
C4—C5—C6	121.3 (6)	03-81-021	103.4 (3)
С4—С5—Н5	119.4	02—\$1—C21	103.5 (3)
С6—С5—Н5	119.4	01—S1—C21	104.2 (3)
C1—C6—C5	117.8 (5)	F2—C21—F1	108.5 (6)
C1—C6—C7	121.9 (5)	F2—C21—F3	105.7 (6)
C5—C6—C7	120.1 (5)	F1—C21—F3	105.9 (5)
C6—C7—N1	116.1 (4)	F2—C21—F2'	66.1 (17)
С6—С7—Н7А	108.3	F1—C21—F2'	47.0 (19)
N1—C7—H7A	108.3	F3—C21—F2'	136.2 (19)
С6—С7—Н7В	108.3	F2—C21—F1'	132 (2)

N1—C7—H7B	108.3	F1—C21—F1'	77 (2)
H7A—C7—H7B	107.4	F3—C21—F1'	34 (2)
N1—C8—C9	109.9 (4)	F2'—C21—F1'	120 (3)
N1—C8—H8A	109.7	F2—C21—F3'	40.4 (18)
С9—С8—Н8А	109.7	F1—C21—F3'	141.6 (11)
N1—C8—H8B	109.7	F3—C21—F3'	73.6 (19)
С9—С8—Н8В	109.7	F2'—C21—F3'	106.3 (10)
H8A—C8—H8B	108.2	F1'—C21—F3'	106.9 (10)
N2—C9—C8	111.0 (4)	F2—C21—S1	113.0 (5)
N2—C9—H9A	109.4	F1—C21—S1	111.4 (5)
С8—С9—Н9А	109.4	F3—C21—S1	111.9 (4)
N2—C9—H9B	109.4	F2'—C21—S1	110.6 (17)
С8—С9—Н9В	109.4	F1'—C21—S1	108 (3)
Н9А—С9—Н9В	108.0	F3'—C21—S1	103.7 (8)
N1-C10-C11	110.3 (4)	O4—S2—O5	116.3 (3)
N1—C10—H10A	109.6	O4—S2—O6	114.4 (3)
C11-C10-H10A	109.6	05—82—06	113.0 (2)
N1-C10-H10B	109.6	O4—S2—C22	103.6 (3)
C11-C10-H10B	109.6	O5—S2—C22	103.2 (3)
H10A—C10—H10B	108.1	O6—S2—C22	104.2 (2)
N2-C11-C10	110.6 (4)	F5—C22—F6	108.1 (7)
N2—C11—H11A	109.5	F5—C22—F4	106.8 (8)
C10-C11-H11A	109.5	F6—C22—F4	107.5 (7)
N2—C11—H11B	109.5	F5—C22—F6'	30.1 (11)
C10-C11-H11B	109.5	F6—C22—F6'	79.8 (12)
H11A—C11—H11B	108.1	F4—C22—F6'	126.7 (13)
N1—C12—C13	111.4 (4)	F5—C22—F5'	84.9 (12)
N1—C12—H12A	109.4	F6—C22—F5'	118.8 (14)
C13—C12—H12A	109.4	F4—C22—F5'	22.1 (13)
N1—C12—H12B	109.4	F6'—C22—F5'	107.7 (10)
C13—C12—H12B	109.4	F5—C22—F4'	130.2 (11)
H12A—C12—H12B	108.0	F6—C22—F4'	23.4 (11)
N2-C13-C12	109.8 (4)	F4—C22—F4'	91.2 (12)
N2-C13-H13A	109.7	F6'—C22—F4'	103.1 (14)
C12—C13—H13A	109.7	F5'—C22—F4'	108.4 (9)
N2-C13-H13B	109.7	F5—C22—S2	111.7 (6)
С12—С13—Н13В	109.7	F6—C22—S2	112.6 (6)
H13A—C13—H13B	108.2	F4—C22—S2	110.0 (6)
C15—C14—N2	115.6 (4)	F6'—C22—S2	115.3 (11)
C15—C14—H14A	108.4	F5'—C22—S2	116.9 (15)
N2	108.4	F4'—C22—S2	104.3 (7)
C6—C1—C2—C3	-0.2 (8)	C16—C17—C18—C19	0.1 (10)
C1—C2—C3—C4	0.4 (9)	C17—C18—C19—C20	-0.2 (10)
C2—C3—C4—C5	-0.2 (9)	C18—C19—C20—C15	0.7 (9)
C3—C4—C5—C6	-0.2 (9)	C16—C15—C20—C19	-1.0 (8)
C2—C1—C6—C5	-0.3 (7)	C14—C15—C20—C19	-176.9 (5)
C2—C1—C6—C7	-175.8 (5)	O3—S1—C21—F2	69.7 (6)
C4—C5—C6—C1	0.5 (8)	O2—S1—C21—F2	-170.0 (5)
C4—C5—C6—C7	176.1 (5)	O1—S1—C21—F2	-52.2 (5)

C1—C6—C7—N1	-89.4 (6)	O3—S1—C21—F1	-167.8 (5)
C5-C6-C7-N1	95.2 (5)	O2-S1-C21-F1	-47.5 (5)
C12—N1—C7—C6	-165.2 (4)	O1-S1-C21-F1	70.3 (5)
C8—N1—C7—C6	-46.1 (6)	O3—S1—C21—F3	-49.5 (6)
C10—N1—C7—C6	76.0 (5)	O2—S1—C21—F3	70.9 (5)
C12—N1—C8—C9	-63.2 (5)	O1—S1—C21—F3	-171.4 (5)
C10-N1-C8-C9	53.4 (5)	O3—S1—C21—F2'	142 (2)
C7—N1—C8—C9	177.7 (4)	O2—S1—C21—F2'	-98 (2)
C13—N2—C9—C8	53.6 (5)	O1—S1—C21—F2'	20 (2)
C11—N2—C9—C8	-63.8 (5)	O3—S1—C21—F1'	-85 (2)
C14—N2—C9—C8	175.4 (4)	O2—S1—C21—F1'	35 (2)
N1—C8—C9—N2	9.1 (6)	O1—S1—C21—F1'	153 (2)
C12-N1-C10-C11	52.1 (5)	O3—S1—C21—F3'	28 (2)
C8—N1—C10—C11	-64.4 (5)	O2—S1—C21—F3'	148 (2)
C7—N1—C10—C11	170.7 (4)	O1—S1—C21—F3'	-94 (2)
C13—N2—C11—C10	-64.0 (5)	O4—S2—C22—F5	-56.3 (9)
C9—N2—C11—C10	52.8 (5)	O5—S2—C22—F5	-178.0 (9)
C14—N2—C11—C10	171.5 (4)	O6—S2—C22—F5	63.7 (9)
N1-C10-C11-N2	9.4 (5)	O4—S2—C22—F6	-178.1 (9)
C8—N1—C12—C13	52.9 (5)	O5—S2—C22—F6	60.2 (9)
C10-N1-C12-C13	-63.7 (5)	O6—S2—C22—F6	-58.1 (9)
C7—N1—C12—C13	175.2 (4)	O4—S2—C22—F4	62.1 (9)
C9—N2—C13—C12	-64.1 (5)	O5—S2—C22—F4	-59.6 (9)
C11—N2—C13—C12	52.6 (5)	O6—S2—C22—F4	-177.9 (9)
C14—N2—C13—C12	176.6 (4)	O4—S2—C22—F6'	-89.0 (19)
N1-C12-C13-N2	9.7 (6)	O5—S2—C22—F6'	149.3 (19)
C13—N2—C14—C15	-49.7 (6)	O6—S2—C22—F6'	31.0 (19)
C9—N2—C14—C15	-168.8 (4)	O4—S2—C22—F5'	39.1 (16)
C11—N2—C14—C15	72.8 (5)	O5—S2—C22—F5'	-82.6 (16)
N2-C14-C15-C16	95.0 (6)	O6—S2—C22—F5'	159.1 (16)
N2-C14-C15-C20	-89.1 (6)	O4—S2—C22—F4'	158.8 (14)
C20-C15-C16-C17	0.9 (8)	O5—S2—C22—F4'	37.0 (14)
C14—C15—C16—C17	176.8 (5)	O6—S2—C22—F4'	-81.2 (14)
C15—C16—C17—C18	-0.4 (9)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C7—H7A···O6 ⁱ	0.97	2.54	3.380 (6)	145
C9—H9A…O1 ⁱⁱ	0.97	2.56	3.416 (6)	148
C9—H9B···O2 ⁱⁱⁱ	0.97	2.38	3.227 (6)	146
C10—H10B···O1 ⁱⁱⁱ	0.97	2.43	3.347 (6)	156
C11—H11A····O4 ⁱⁱⁱ	0.97	2.38	3.255 (6)	150
С11—Н11В…О6	0.97	2.37	3.191 (5)	142
С12—Н12В…О5	0.97	2.38	3.287 (6)	155
C14—H14A…O1 ⁱⁱ	0.97	2.50	3.357 (7)	148
C14—H14B···O4 ⁱⁱⁱ	0.97	2.54	3.394 (7)	147
C10—H10B…O1 ⁱⁱⁱ C11—H11A…O4 ⁱⁱⁱ C11—H11B…O6 C12—H12B…O5 C14—H14A…O1 ⁱⁱ C14—H14B…O4 ⁱⁱⁱ	0.97 0.97 0.97 0.97 0.97 0.97	2.43 2.38 2.37 2.38 2.50 2.54	3.347 (6) 3.255 (6) 3.191 (5) 3.287 (6) 3.357 (7) 3.394 (7)	156 150 142 155 148 147

Symmetry codes: (i) x+1/2, y, -z+1/2; (ii) -x+1, y-1/2, -z+1/2; (iii) -x+1/2, y-1/2, z.

